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Week 11: 
Circuits with Inductors L
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LR Circuits
The sum of potential differences 
around the loop gives
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It represents the time required for the current 
I to reach or 63 % of its maximum value
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RC vs LR Circuits
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LR Circuits
Example: An LR circuit.

(a) What is the current at t = 0 
(just closed switch)? 

(b) The switch is closed. When will the maximum 
current be achieved and what is its magnitude? 
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If the battery is then taken out (switch position 
1), the current will gradually decay away:

LR Circuits
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LR Circuits

Example: An LR circuit.

How long will it take the 
current to reach half its 
maximum possible value?

At this instant, at what rate is energy being delivered by 
the battery?
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The switch S is closed and 
current flows.

The initial current, 
immediately after the 
switch is closed, is:
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LR Circuit Question 1

The current through the inductance takes 
time to build up—it begins at zero.  But the 
current through the other R starts 
immediately, so at t = 0 there is current 
around the lower loop only.
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The switch S is closed and 
current flows.

What is the current a long 
time later? 

R L

I(t)

S

V0

R

  

V
0

R

2V
0

R

V0 2R

LR Circuit Question 2

After the current has built up to a 
steady value, the inductance plays 
no further role as long as the current 
remains steady.
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After this long time, the 
switch is suddenly opened.

What are the currents 
immediately after the switch 
is opened?

in the upper loop    

in the upper loop

all currents zero

LR Circuit Question 3
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The inductance will not allow sudden 
discontinuous change in current, so the 
current through it will be the same just 
after opening the switch as it was 
before. This current must now go back 
via the other resistance.

I(t)



A capacitor is connected to an inductor in an LC 
circuit.

Assume the capacitor is initially charged and then 
the switch is closed.

Assume no resistance and no energy losses to 
radiation.

So the total energy in the LC circuit is conserved 
at every instant. 

It is an energy distributed partially in the capacitor C 
and partially in the inductor L.

11.10

LC Circuits



Under the previous conditions, the current in the circuit and the 
charge on the capacitor oscillate between maximum positive 
and negative values.

With zero resistance, no energy is transformed into internal 
energy.

Ideally, the oscillations in the circuit persist indefinitely.

 The idealizations are no resistance and no radiation.

STARTING POINT: The capacitor is fully charged.

 The energy U in the circuit is stored in the electric field of the 
capacitor.

 The energy is equal to Q2
max / 2C.

 The current in the circuit is zero.

 No energy is stored in the inductor.

The switch is closed.

Oscillations in an LC Circuit

11.11



Oscillations in an LC Circuit

The capacitor becomes fully charged and the cycle repeats (no resistor).

The energy continues to oscillate between the inductor and the capacitor.

The total energy stored in the LC circuit remains constant in time and equals.
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The current is equal to the rate at which the charge changes on the capacitor.

 As the capacitor discharges, the energy stored in the electric field decreases.

 Since there is now a current, some energy is stored in the magnetic field of the 
inductor.

 Energy is transferred from the electric field to the magnetic field.

Eventually, the capacitor becomes fully discharged.

 It stores no electric energy.

 All of the energy is stored in the magnetic field of the inductor.

 The current reaches its maximum value.

The current now decreases in magnitude, recharging the capacitor with its plates having 
opposite their initial polarity.

11.12



The potential energy ½kx2 stored in the spring is analogous to the electric potential energy (Qmax)2/(2C) 
stored in the capacitor.

All the energy is stored in the capacitor at t = 0.

This is analogous to the spring stretched to its maximum positive amplitude + A.

LC Circuit Analogy to Spring-Mass System, 1

xeq = 0

+ A

11.13



The kinetic energy (½ mv2) of the mass m attached to the spring is analogous                                                 
to the magnetic energy (½ L I2)  stored in the inductor.

At t = ¼ T, all the energy is stored as magnetic energy in the inductor.

The maximum current occurs in the circuit.

This is analogous to the mass at equilibrium.

11.14

LC Circuit Analogy to Spring-Mass System, 2

xeq = 0



At t = ½ T, the energy in the circuit is completely stored in the capacitor.

The polarity of the capacitor is reversed.

This is analogous to the spring compressed to the maximum of its negative distance from the equilibrium 
position - A.

11.15

LC Circuit Analogy to Spring-Mass System, 3

xeq = 0

- A



At t = ¾ T, the energy is again stored in the magnetic field of the inductor.

This is analogous to the mass again reaching the equilibrium position.

11.16

LC Circuit Analogy to Spring-Mass System, 4

xeq = 0



At other points in the cycle, energy is shared between the electric and magnetic fields.

11.17

LC Circuit Analogy to Spring-Mass System, 5

At t = T, the cycle is completed

The conditions return to those identical to the initial conditions.

xeq = 0
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Energy oscillation in LC Circuits - summary
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11.19

Time Functions of an LC Circuit

In an LC circuit, charge can be expressed as a function of time.

 Q = Qmax cos (ωt + φ)

 This is for an ideal LC circuit

The angular frequency, ω, of the circuit depends on the inductance and the capacitance.

 It is the natural frequency of oscillation of the circuit.

The current can be expressed as a function of time:

The total energy (at some instant t) can be expressed as a function of time:
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The charge on the capacitor oscillates 
between Qmax and  -Qmax.

The current in the inductor oscillates 
between Imax and -Imax.

Q and I are 90o out of phase with each 
other

 So when Q is a maximum, 

I is zero, etc.

11.20

Charge and Current in an LC Circuit



The energy continually oscillates between the energy 
stored in the electric and magnetic fields.

When the total energy is stored in one field, the 
energy stored in the other field is zero.

11.21

Energy in an LC Circuit – Graphs 
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The energy of the LC circuit continuously 
oscillates between energy stored in the 
capacitor’s electric field and energy 
stored in the inductor’s magnetic field.

The amplitudes of the two graphs in Figure 
must be equal because the maximum 
energy stored in the capacitor (when I = 0) 
must equal the maximum energy stored in 
the inductor (when q = 0). This equality is 
expressed mathematically as

LC Circuits - summary
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Assume the capacitor has an initial charge 𝑄௠௔௫ (the maximum charge) and the switch is open 
for 𝑡 < 0 and then closed at 𝑡 = 0. Let’s investigate what happens from an energy viewpoint.

Consider some arbitrary time 𝑡 after the switch is closed so that the capacitor has a charge 
𝑞(𝑡) < 𝑄௠௔௫, and the current is 𝑖(𝑡) < 𝐼௠௔௫. At this time, both circuit elements store 
energy, but the sum of the two energies must equal the total initial energy U stored in the 
fully charged capacitor at 𝑡 = 0

The total energy of the system must remain constant in time

LC Circuits (formal solution)

When the capacitor is fully charged, the energy U in the circuit is stored in the capacitor’s electric 
field and is equal to 𝑄௠௔௫

ଶ /2𝐶. At this time, the current in the circuit is zero; therefore, no energy 
is stored in the inductor.

Second order
differential
equation
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Let’s solve for q by noting that this expression is of the same form for a particle in 
simple harmonic motion:

where k is the spring constant, m is the mass of the 
block, and 𝜔 = 𝑘/𝑚. The solution of this 
mechanical equation has the general form:

Because Equation                                   is of the same mathematical form as 
the differential equation of the simple harmonic oscillator, it has the solution

where 𝑄௠௔௫ is the maximum charge of the capacitor and the angular frequency 𝜔 is
the natural frequency of oscillation of the LC circuit

To determine the value of the phase angle 𝜙, let’s examine the initial conditions, which in our 
situation require that at 𝑡 = 0, 𝑖 = 0 and 𝑞 = 𝑄௠௔௫. 

LC Circuits (formal solution)



Notes About Real LC Circuits

In actual circuits, there is always some resistance.

Therefore, there is some energy transformed to internal energy of the resistor (Joule heating).

Radiation is also inevitable in this type of circuit. (we will see that oscillating charges will generate radiation!)

In a REAL LC circuit, 

the total energy in the circuit continuously decreases as a result of these processes.

11.25

RLC Circuit



A circuit containing a resistor, an inductor and a 
capacitor is called an RLC Circuit.

Assume the resistor represents the total resistance 
of the circuit.

11.26

The RLC Circuit



RLC Circuit, Analysis

The total energy is not constant, since there is a

transformation to internal energy in the resistor at 

the rate of  dU/dt = - I 2R.

 Radiation losses are still ignored

The circuit’s operation can be expressed as (Kirchoff)

ଶ

ଶ

11.27

Eneregy loss = damping term



RLC Circuit Compared to Damped Oscillators

The RLC circuit is analogous to a damped harmonic oscillator.

When R = 0

 The circuit reduces to an LC circuit and is equivalent to no damping in a mechanical oscillator.

When R is small:

 The RLC circuit is analogous to “light damping” in a mechanical oscillator.

 Q = Qmax e-Rt/2L cos ωdt

 ωd is the angular frequency of oscillation for the circuit and 
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   
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We will not derive this equation



RLC Circuit Compared to Damped Oscillators

When R is very large, the oscillations damp out very rapidly.

There is a “critical value” of R above which no oscillations occur.

(B) If R = RC, the circuit is said to be “critically damped”.

(C) When R > RC, the circuit is said to be “overdamped”.

(A) When R < RC, the circuit is said to be “underdamped”.

4 /CR L C=

11.29



Damped RLC Circuit, Graph

The maximum value of Q decreases after each 
oscillation.

 R < RC

This is analogous to the amplitude of a damped 
spring-mass system.

11.30



11.31

Infinite oscillations: LC circuit
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Damped oscillations: RLC circuit
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Damped oscillations: RLC circuit



11.34

Summary: Analogies Between Electrical and Mechanic Systems
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Resistors in series and in parallel REMINDER
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Capacitors in series and parallel REMINDER
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Inductance in series and parallel
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