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Week 11:
Circuits with Inductors L
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LR Circuits

The sum of potential differences A B C

@ ‘\—.
around the loop gives T V}{AI fb‘b}'b
I
VO—Lﬂle > L£+IR:VO ! )
dt dt < |
: §
V 0
V,—IR L R I

The time constant :

L
—— 0.63 I1ax

R

It represents the time required for the current
I to reach or 63 % of its maximum value 0
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LR Circuits

Example: An LR circuit. )OO0
% L =220mH
]=—0(1—e_t/f) R=

R > 30 Q
(a) What is the current atr=0 |
(just closed switch)? |
I =0 Vo = 12.0V

t=0

(b) The switch is closed. When will the maximum
current be achieved and what is its magnitude?
1

__________ 0 1%
0.63 Ly F—— = I =1 =

_0
' max {—o0 R
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LR Circuits

If the battery is then taken out (switch position
1), the current will gradually decay away:

K—L%z[R — ﬂ:—ﬁdt — I:IOe"/T
[

1 L 7
T=—
R
A B C !
¢ AMN———000 ——
R L Iy
. .
< ! 0.371p |-~
2 |
| 0 _ L Time
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LR Circuits

75000
L=220mH

Example: An LR circuit.

® R =
How long will it take the S 30 Q§
current to reach half its

maximum possible value? I
L
Vo = 12.0V
v

—_0(1_ /7 _15 —t/z'_1 . _ L
= (1 e )—2R—>e —E,t—rln2—ln2E

R

At this instant, at what rate is energy being delivered by
the battery?

11.6



EPFL

LR Circuit Question 1

The switch S is closed and

current flows. —«/\M—%ZL)UG\—
The initial current,
immediately after the A
switch is closed, is:
V/R - ]
0 1w |
B /R ;
- VO/2R ;I:he currer_lt through the_ inductance takes
ime to build up—it begins at zero. But the

current through the other R starts
immediately, so at 7 = 0 there is current
around the lower loop only.
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LR Circuit Question 2

The switch S is closed and

current flows. | —’\/\/I{/\/—/UUZ%W—
What is the current a long
time later? —'\/\/I{/\,
- s
o/ 1w | ;
B 2/, /R "
- Vo/zR After the current has built up to a

steady value, the inductance plays
no further role as long as the current
remains steady.
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LR Circuit Question 3

After this long time, the
switch is suddenly opened.

What are the currents 10

immediately after the switch
is opened?

V./R in the upper loop ¢mm

I 27 / Rin the upper loop
Il all currents zero

The inductance will not allow sudden
discontinuous change in current, so the
current through it will be the same just
after opening the switch as it was
before. This current must now go back
via the other resistance.
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LC Circuits

A capacitor is connected to an inductor in an LC
circuit.

Assume the capacitor is initially charged and then
the switch is closed.

Assume no resistance and no energy losses to E
radiation. max

So the total energy in the LC circuit is conserved °/°
at every instant.

It is an energy distributed partially in the capacitor C
and partially in the inductor L.
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Oscillations in an LC Circuit

Under the previous conditions, the current in the circuit and the
charge on the capacitor oscillate between maximum positive
and negative values.

With zero resistance, no energy is transformed into internal
energy.

Ideally, the oscillations in the circuit persist indefinitely.

= The idealizations are no resistance and no radiation.

STARTING POINT: The capacitor is fully charged.

= The energy U in the circuit is stored in the electric field of the
capacitor.

= The energy is equal to Q2 / 2C.
= The current in the circuit is zero.
= No energy is stored in the inductor.

The switch is closed.

Qmmax
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Oscillations in an LC Circuit

The current is equal to the rate at which the charge changes on the capacitor.

= As the capacitor discharges, the energy stored in the electric field decreases.

= Since there is now a current, some energy is stored in the magnetic field of the

inductor.

= Energy is transferred from the electric field to the magnetic field. +
Eventually, the capacitor becomes fully discharged. ¢
= |t stores no electric energy.

= All of the energy is stored in the magnetic field of the inductor. 3/
= The current reaches its maximum value. =

Qmax

S

The current now decreases in magnitude, recharging the capacitor with its plates having

opposite their initial polarity.

The capacitor becomes fully charged and the cycle repeats (no resistor).
The energy continues to oscillate between the inductor and the capacitor.

The total energy stored in the LC circuit remains constant in time and equals.

2
U:UC +UL:E+%I_[2
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LC Circuit Analogy to Spring-Mass System, 1

Xeq= 0

% ' v=10

100 koo
L 50 I E FAMMAMANA- I
0
Energy in Energy in Total :
inductor capacitor energy :
- +A

The potential energy '2kx? stored in the spring is analogous to the electric potential energy (Q,,.,)?/(2C)
stored in the capacitor.

All the energy is stored in the capacitor at t = 0.

This is analogous to the spring stretched to its maximum positive amplitude + A.
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LC Circuit Analogy to Spring-Mass System, 2

Xeq= 0

max

%

|
|
100 k [ res
Q=0 L 50 E YWWWWWW- e |
N 0
B

. - MRS . l
]j]nergy in Ene lg\ in Total i
inductor capacitor energy I
|

|

The kinetic energy (Y2 mv?) of the mass m attached to the spring is analogous
to the magnetic energy (Y2 L I1?) stored in the inductor.

Att="%T, all the energy is stored as magnetic energy in the inductor.
The maximum current occurs in the circuit.

This is analogous to the mass at equilibrium.
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LC Circuit Analogy to Spring-Mass System, 3

x
1l
o

€q

max - l %

= -~ 100 P cdadl

B A + E I 50 I E Wﬁz‘
T 0

-A

Energy in Energyin Total
inductor capacitor energy

Att="7T, the energy in the circuit is completely stored in the capacitor.
The polarity of the capacitor is reversed.

This is analogous to the spring compressed to the maximum of its negative distance from the equilibrium
position - A.
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LC Circuit Analogy to Spring-Mass System, 4

=3
% | Vinax ===

ﬁ 100 k
Q=0 g1 50E. E AW R
0

Energy in Energyin Total |

. 2 [

» inductor capacitor energy :
[

Att=3%T, the energy is again stored in the magnetic field of the inductor.

This is analogous to the mass again reaching the equilibrium position.
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LC Circuit Analogy to Spring-Mass System, 5

At t = T, the cycle is completed
The conditions return to those identical to the initial conditions.

+Qmax %
100

B vy I 50 l E ’ *
0 |

| e e S = R
;) r l?nelgym ltn(,lg} in Total
max * inductor capacitor energy

At other points in the cycle, energy is shared between the electric and magnetic fields.

+0Q I > :
= : y % | =V
y 100 e
a E %%L 50\:. E MMM [
= — B 0 — — \ I
-0 C Energy in Energy in Total —> X lk-—
~ inductor capacitor energy | : | i
—A 0 -A
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Energy oscillation in LC Circuits - summary

-
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| . 0 |
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A simple LC cir-
cuit. The capacitor has an initial
charge Q, .., and the switch is
open for t < 0 and then closed at
t=0.

+QII]H\'

[+ + +=

y

B -

—Q max

= Qll}}ix b 0
LA E % L
B3 E
+Q"|X|x C
1= ]"]i!.‘(

-

100
=
0

Energy in Energy in Total
inductor capacitor energy

%

100
50
0

Energy in Energy in Total
inductor capacitor energy

%

100
P— |
0

Energy in Energy in Total
inductor capacitor energy

%

100
50
0

Energy in Energy in Total
inductor capac iton energy

%

100 }
BOEIIE
0

Energy in Energy in Total
inductor capacitor energy

I
|
I

max

k
SMWWWWWWWWA- e

v=20

gk
B
_“__*__“__“_“___i_

—
vl"'A.‘(

&=

~WWWWWW- e

v=10

k
VVWWWWWWA- B

1
1
1
1
1
1
1
[
k |
AW
1
—» X
o
1 1 | |
-A 0 -A

11.18



EPFL

Time Functions of an LC Circuit

In an LC circuit, charge can be expressed as a function of time.
= Q=QCos (wt+ @)

= This is for an ideal LC circuit

The angular frequency, w, of the circuit depends on the inductance and the capacitance.

= |t is the natural frequency of oscillation of the circuit. w = /
JLC
The current can be expressed as a function of time:
dQ :
| = i -wQ,,.,, Sin(wt+ @)

The total energy (at some instant t) can be expressed as a function of time:

2

U=U,+U, = szax cos” wt + %Ll,iax sin® wt
c
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Charge and Current in an LC Circuit

The charge on the capacitor oscillates
between Q. and -Q .,

The current in the inductor oscillates

between I, and -,

Q and 7 are 90° out of phase with each
other

= So when Q is a maximum,

| is zero, etc.

The charge Q and the current /
are 90° out of phase with each
other.

Qmax
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Energy in an LC Circuit — Graphs

The sum of the two curves is a
constant and is equal to the total
energy stored in the circuit.

The energy continually oscillates between the energy
stored in the electric and magnetic fields.

When the total energy is stored in one field, the v
energy stored in the other field is zero. Uc
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LC Circuits - summary

The energy of the LC circuit continuously
oscillates between energy stored in the
capacitor’s electric field and energy
stored in the inductor’s magnetic field.

The amplitudes of the two graphs in Figure
must be equal because the maximum
energy stored in the capacitor (when 7 = 0)
must equal the maximum energy stored in
the inductor (when g = 0). This equality 1s
expressed mathematically as

Q 12n'dx Ll;znax
6 2

‘.) ™ ()
cos” wt + sin“ wt = 1.

_

The charge ¢ and the current ¢
are 90° out of phase with each
other.

/

q k N
\\
inax

|
I
|
A
|

max

2
Q max

U
2C

(cos®* wt + sin® wt) =

|

2 .
Qmax 8@ TF T 3T

18 :

cos’> wt + sLI2,, sin® wt

max

The sum of the two curves is a
constant and is equal to the total
energy stored in the circuit.

U
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LC Circuits (formal solution)

Assume the capacitor has an initial charge Q,,,, (the maximum charge) and the switch is open
for t < 0 and then closed at t = 0. Let’s investigate what happens from an energy viewpoint.

When the capacitor is fully charged, the energy U in the circuit is stored in the capacitor’s electric
field and is equal to Q2,,,/2C. At this time, the current in the circuit is zero; therefore, no energy
is stored in the inductor.

Consider some arbitrary time t after the switch is closed so that the capacitor has a charge

q(t) < Qumax> and the current is i(t) < L,,4,. At this time, both circuit elements store
energy, but the sum of the two energies must equal the total initial energy U stored in the
c—= LE fully charged capacitor at t = 0 9 9
B Qm;tx q 1 .2 Q, max
U=Ug+ Ug=_~ +3li" =
e 2C 2C
w o— . . .
S The total energy of the system must remain constant in time
A simple LC cir- 9 "
cuit. The capacitor has an initial dU d q 15 9 q dq . dl
charge Q... and the switch is — = — ] —— = §LZ = — — Ll — = O
open for ¢ < 0 and then closed at dt dt 2 C C d[ dt
t= 0.
‘ ) 42 Second order
i = dq/di 4, , T_, qg_ 1 g | differenta
di/dt = d*q/dt* ' dt? dt? j & equation
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LC Circuits (formal solution)

Let’s solve for ¢ by noting that this expression is of the same form for a particle in
simple harmonic motion:

d®x k " where £ is the spring constant, m is the mass of the
a2 ™ TOX  plock, and w = /k/m. The solution of this
mechanical equation has the general form:
g 1 x = A cos (wt + ¢)
Because Equation 412 LC 7 is of the same mathematical form as

the differential equation of the simple harmonic oscillator, it has the solution

q - Ql]]’tl.\’ COS (wt + ¢)

where Q4. 1 the maximum charge of the capacitor and the angular frequency w is
the natural frequency of oscillation of the LC circuit

d .
] = ?Z = _meax sin ((,()t T ¢)

S|
o

To determine the value of the phase angle ¢, let’s examine the initial conditions, which in our
situation require thatat t = 0,1 = 0 and g = Q-

0= _meax sin ¢ — ¢ =0 — q= Qmax COs wt
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CURIOSITY

Notes About Real LC Circuits

In actual circuits, there is always some resistance. ===y  RLC Circuit
Therefore, there is some energy transformed to internal energy of the resistor (Joule heating).

Radiation is also inevitable in this type of circuit. (we will see that oscillating charges will generate radiation!)

In a REAL LC circuit,

the total energy in the circuit continuously decreases as a result of these processes.
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CURIOSITY

The RLC Circuit

A circuit containing a resistor, an inductor and a
capacitor is called an RLC Circuit.

Assume the resistor represents the total resistance
of the circuit.

The switch is set first to position
a, and the capacitor is charged.
The switch is then thrown to

position b.
a | S
o ! &
b
+
 — L —cC
R
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RLC Circuit, Analysis

The switch is set first to position

The total energy is not constant, since there is a a, and the capacitor is charged.
transformation to internal energy in the resistor at The switch is then thrown to
the rate of dU/dt = - | 2R. position ©.
= Radiation losses are still ignored a ““* S
]
The circuit’s operation can be expressed as (Kirchoff) b
2 T L
d d E_— —C
T e -
dt? dt  C
/ R
Eneregy loss = damping term

11.27
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RLC Circuit Compared to Damped Oscillators

The RLC circuit is analogous to a damped harmonic oscillator.

When R =0

= The circuit reduces to an LC circuit and is equivalent to no damping in a mechanical oscillator.

When R is small:

= The RLC circuit is analogous to “light damping” in a mechanical oscillator.
= Q=Q . €2 cos wyt

= wy is the angular frequency of oscillation for the circuit and

1

1 R 2 A
Wa = {E‘(Z) } We will not derive this equation
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RLC Circuit Compared to Damped Oscillators

When R is very large, the oscillations damp out very rapidly.

There is a “critical value” of R above which no oscillations occuir.

R.=+4L/C

(B) If R = R, the circuit is said to be “critically damped”.
(C) When R > R, the circuit is said to be “overdamped”.

(A) When R < R, the circuit is said to be “underdamped”.

CURIOSITY

FIGURE Charge Q on the
capacitor in an LRC circuit as a
function of time: curve A is for
underdamped oscillation

(R*> < 4L/C), curve B is for
critically damped (R? = 4L/C),
and curve C is for overdamped
(R?> > 4L/C).
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Damped RLC Circuit, Graph

The maximum value of Q decreases after each

oscillation.

“ R<R;

This is analogous to the amplitude of a damped

spring-mass system.

The (Fversus-t curve represents
a plot of Equation 32.31.

) 4
Q *”
|

[

Qmax ;

-

\\ i

o ]

Y~

"§ r ~ <~

0 .‘, /\ N A2~
V N

L
\
\
\

CURIOSITY
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— Infinite oscillations: LC circuit CUROSITY

o the oscillations are very similar to the oscillations of a pendulum:

LC circuit Pendulum
: = 1’6 0 =
i?/ T 3/,5 . Q,—/ + Q%/ 0 722722
“kinetic” term  “potential” term kinetic term  “potential” term
. 1 . z
LC | /
Q(t) = Qo cos(wt + ¢) 0(t) = Oo(coswt + ¢)
displacement
4 period
2

o ANl

11.31



Damped oscillations: RLC circuit S

e the equation (:;T? + %% + % = 0 has the form:

X+ 2yx +wix =0
/4444

o this is the same equation of a pendulum with a friction Fg, = —nv:

d26 de
2d0 Y
m{ 1 mg(0 nfdt

RLC circuit Pendulum

d’Q RdQ 1 d0 ndd g

—+——+ —=Q = — 4+ -—4+260=0
a2 “Lar TEe” Bz a1

W
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Damped oscillations: RLC circuit CORIOSITY

o from the analogy with the pendulum, we expect that oscillations cannot last forever
and eventually decay, having lost all its energy

o if the energy losses are sufficiently low, v < w, the solution is

P

.
decay o
oscillations

Q(t) = Qo-e7 7" - cosy/wg — 73t

o indeed, the amplitude of oscillations decreases with exponential rate with time

o the amplitude decreases by e 7 after each period,
and the actual angular frequency becomes smaller:

Amplitude

_ [
w=\/w—v? < wo

e to maintain the oscillations and compensate
the energy losses, we need to add an energy
source
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CURIOSITY

Summary: Analogies Between Electrical and Mechanic Systems

WY RRY Analogies Between Electrical and Mechanical Systems

Electric Circuit

One-Dimensional
Mechanical System

Charge Qe x Position

Current I v, Velocity

Potential difference AVes F, Force

Resistance Re b Viscous damping coefficient

Capacitance Ceo 1/k (k = spring constant)

Inductance Lo m Mass

Current = time derivative = g oo = dx Velocity = time derivative
of charge dt ot of position

Rate of change of current = alr d*Q _dv,  dx Acceleration = second time
second time derivative E B ? o B dt ﬁ derivative of position

of charge

Energy in inductor

U,=3iLI? & K= imo®

Kinetic energy of moving object

Q2
Energy in capacitor U= %T — U= 3kx? Potential energy stored in a spring
Rate of energy loss due I’R & bv? Rate of energy loss due
to resistance to friction
d? d d’x  d
RLC circuit L?g 2 R?? + % =0 m (itj + b?j +kx=0 Damped object on a spring
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Resistors in series and in parallel

REMINDER

Ry L

I,
_? — = — — >1
-
Resistors in series
VT=V1+V2, 11=12=IT
Ve Vi W,
R, = = =R,+R
LT + I 1 2

R e
Parallel resistors

VT:V]_:VZ, IT:I]_‘I'IZ

Vr 11
I L, 1 1
Vr RTR,

R+ = =
T 11 N
Vr
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Capacitors in series and parallel

|
C; C 1
IR
c' Co

Capacitors in series

LCT - LG_'F LGD
L=L=I1r=>0Q, =0, =0Qr

Qr 1 1

Ve ViV, 1 1
+ +
Qr Qr (1 (

(;T —

{ort = o

||
||
C2 C-|+Cz

Parallel capacitors

L‘T - LCI — LED
Ir=15L+1,=Qr =01 +0Q-

QT_Q1+Q2

Con = —
v v g

— CH_'F (22

REMINDER
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Inductance in series and parallel

L0000 -=-000000"
L1 L2 L1 +L2

Inductance in series

VT — Vl + Vz,
dl, dl, diy
P72 7 de  dt dt
Vr V1 V2

LT :L1+L2

= dljdt _ dlojdt | dlyjdt

00
1L = P
00 1
L2 1 1
L
[t T
Parallel inductance
VT — V1 — Vz,
di dlI; dI,
IT_Il_I_IZzE_dt-l_dt
= Vr _ 1 _ 1
T~ al/dt — 1dl 1dl, 1 1
Ve dt " Vi dt L L
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